THE WHAT AND WHY OF WETLAND MAPPING AND ASSESSMENT IN OKLAHOMA

Daniel Dvorett ^{1,2}, Craig Davis ¹ and Brooks Tramell ² 1 Department of Natural Resource Ecology and Management, Oklahoma State University 2 Oklahoma Conservation Commission

Maps and Assessment

Cornerstones of wetland management

Location, abundance, characteristics

Assessment

Health, condition, integrity, functions

Conceptual Framework

Wetland Knowledge

Classes
Functions
Stressors
Locations
Abundance

Monitoring and Assessment Strategies

RestorationAmbient monitoringTracking loss/gains

Logistical Framework

Program Needs
Regulatory
Budgetary
Staff
Partnerships

Outline

Wetland Maps

- Relation to programmatic needs and regulations
- Background
- Current techniques
- Tracking losses and gains
- Restoration identification

Wetland Assessment

- Relation to programmatic need and regulations
- Background
- Functional classification
- Oklahoma Rapid Assessment Method (OKRAM)
- Future directions for assessment

Maps: Needs and Regulations

Understanding distribution and location of wetlands

- Rare wetland types
- Preliminary project planning
 - Highway planning
 - 404 impacts
 - Impacts from federal projects
- Status and Trends
 - Tracking wetland loss and gain

From: Dahl, T.E. 2011. Status and trends of wetlands in the conterminous United States 2004 to 2009. U.S. Department of the Interior; Fish and Wildlife Service, Washington, D.C. 108pp.

Maps: Needs and Regulations

- Restoration planning and prioritization
 - Integration with 319 program
- Level 1 Landscape Assessment
- Hydrologic studies

Maps: Background

National Wetlands Inventory(NWI)

- Most of the U.S. mapped
- High altitude
- Single date
- 1980's imagery in Oklahoma
- Digitized and freely available

Maps: Background

Need for regional NWI Updates

- Forested wetlands
- Ephemeral wetlands
- Hydrologic classification
- Age of maps

Maps: Background

- New imagery
- Multi-date imagery
- High-recurrence satellite imagery
- Leaf-off and leaf-on imagery
- LIDAR
- Combining manual and automated protocols

Interdunal depressions

- Pleistocene Sand Dunes
 Ecoregion
- Formed in the valleys of dune fields (~700-800 years ago)
- High Density
- Ephemeral and stochastic hydroperiod
- Largely invisible from aerial imagery when dry

Cimarron interdunal wetland maps

- Base Imagery from wet year (2008)
- Multi-year imagery
- Reduces risk of missing wetlands during mapping

44 LANDSAT images from 18 years (1994-2011)

- 3 images per year
 - o (1)Pre-growing (2) peak rain (3) end growing
- Classification of water pixels
- Improves ability to detect wetlands and hydrologic attribution

Statistics comparing original mapping with new mapping

Next step: Hydrologic processing

Maps: Tracking Loss and Gain

- Comparison of baseline to current maps
- 2005 study in the Deep Fork Watershed encountered problems identifying forested wetlands
- Need for accurate baseline and sufficient mapping protocols
- Developments in mapping techniques should improve accuracy

Maps: Restoration Identification

- Hydric soil locations where no current wetlands exist
- Can be prioritized by region to improve specific landscape function
- Coordination to conduct restoration/mitigation in the best locations

Assessment: Needs and Regulations

- Mitigation planning and tracking
- Ambient Monitoring
- Impairment identification
- Water Quality Standard Support

Valencia Wetlands Trust

Valencia Wetland Mitigation Bank: www.idahowetland.com

Assessment: Background

Assessment Endpoint

- Function
- Condition

Reference Condition

Classification

Nitrogen cycling in wetlands progresses more rapidly where there is a thin oxygenated soil layer present. After Mitsch & Gosselink 1993

Natural variability can render condition assessment output useless in identifying impairment

Hydrogeomorphic Classification: based on three components that drive wetland function:

Geomorphic setting

Water Source

GROUND WATER

From Brinson, M.M. 1993. A Hydrogeomorphic classification for wetlands. U.S. Army Corps of Engineers, Washington, DC. Wetlands Research Program Technical Report WRP-DE-4.

- 1. Depressional
- 2. Lacustrine Fringe
- 3. Riverine
- 4. Slope
- 5. Mineral Soil Flats
- 6. Organic Soil Flats
- 7. Tidal Fringe

Subclasses further reduce natural variability in HGM National Classes due to climate and geography

Extensive Literature Review

- Effects of alteration on structure and process
- Previously developed methods

From: Castelle, A.J. et al., 1994. Wetland and stream buffer requirements: A review. Journal of Environmental Quality 23, 878-882.

Rapid Condition Assessment

Stressor based

- Hydrology
- Biota
- Water Quality

Applied at depressional wetlands

- Validated with plant community and sediment chemistry
- Currently being applied at lacustrine fringe and riverine wetlands
 - Multiple wetland types
 - User repeatability

Spearman ρ=0.89; *p* <0.001

Spearman ρ=0.83; *p* <0.001

Spearman ρ=-0.69; *p* <0.001

Spearman ρ=-0.66; *p* <0.001

Assessment: Future Directions

Continue to refine OKRAM

- Multiple wetland types
- Repeatability
- Range of scores
- Redundancy of metrics
- Guidebook

Work with partners to expand assessment into water quality standard and 401/404 program support

Acknowledgments

EPA 104(b)(3) Wetland Program Development Grants
 OSU

- Joe Bidwell
- Bill Hiatt
- Anthony Thornton
- Sarah Gallaway
- Morgan Noland
- Brent Fetting

🖵 OWRB

- Jody Cason
- Darrin Martin
- Elise Sherrod
- Paul Koenig

Questions

